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Abstract This paper describes the solution of a steady-state natural convection problem in porous
media by the radial basis function collocation method (RBFCM). This mesh-free (polygon-free)
numerical method is for a coupled set of mass, momentum, and energy equations in two
dimensions structured by the Hardy’s multiquadrics with different shape parameter and different
order of polynomial augmentation. The solution is formulated in primitive variables and involves
iterative treatment of coupled pressure, velocity, pressure correction, velocity correction, and
energy equations. Numerical examples include convergence studies with different collocation point
density and arrangements for a two-dimensional differentially heated rectangular cavity problem
at filtration Rayleigh numbers Ra* ¼ 25, 50 and 100, and aspect ratios A ¼ 1/2, 1, and 2.
The solution is assessed by comparison with reference results of the fine-mesh finite volume method
in terms of mid-plane velocity components, mid-plane and insulated surface temperatures,
streamfunction minimum, and Nusselt number.

1. Introduction
Understanding of transport phenomena in the porous media is of great
importance in science and engineering. Ever since the original work of Darcy
(1856), these phenomena have been studied both experimentally and
theoretically (Sahimi, 1995). Despite the development of very sophisticated
and relevant analytical techniques (Raghavan and Ozkan, 1992) a great
majority of porous media models could be solved only by using discrete
approximate solutions. These solutions in parallel with the development of
computers nowadays allow the evaluation of physically very complex
situations. However, the diversity of the involved length scales,
inhomogeneities, and anisotropies, together with the justification of using
different classical models (Darcy, Brinkman, Forchheimer) in a specific

The Emerald Research Register for this journal is available at The current issue and full text archive of this journal is available at

www.emeraldinsight.com/researchregister www.emeraldinsight.com/0961-5539.htm

A part of the present research has been supported by a NATO grant under reference
PST.CLG.9977633, and bilateral Slovene-US project Mesh-free Methods for Computational
Modeling of Heat Transfer and Fluid Flow.

Radial basis
function

187

Received November 2002
Revised January 2003

International Journal of Numerical
Methods for Heat & Fluid Flow

Vol. 14 No. 2, 2004
pp. 187-212

q Emerald Group Publishing Limited
0961-5539

DOI 10.1108/09615530410513809



situation still represents a largely unresolved problem. An elaboration of the
state-of-the-art in respective theoretical, experimental, and computational
developments can be found in the comprehensive book of Kaviany (1995).
A frequently encountered physical situation is the porous media natural
convection problem, extensively treated by Nield and Bejan (1992). The
problem of natural convection in the porous media was first numerically
studied by Chan et al. (1970) by using the finite difference method (FDM). A
similar study was performed approximately a decade later by Hickox and
Gartling (1981) by using the finite element method (FEM). Prasad and Kulacki
(1984) pioneered the use of the finite volume method (FVM) for solving this
problem. Jecl et al. (2001) were the first to solve the problem by the boundary
domain integral method (BDIM).

In recent years, a number of mesh-free methods have been developed to
circumvent the problem of polygonisation encountered in the mentioned
methods. In mesh-free methods, approximation is constructed entirely in terms
of a set of nodes. A class of such methods is based on the collocation with radial
basis functions (Golberg and Chen, 1997). These functions have been first
under intensive research in multivariate data and function interpolation
(Franke, 1982). Kansa (1990a, b) used them for scattered data approximation
and then for the solution of the PDEs. The key point of the radial basis function
collocation method or kansa method (RBFCM or KM) solution of PDEs is the
approximation of the fields on the boundary and in the domain by a set of
global approximation functions and subsequent representation of the partial
derivatives by the partial derivatives of these global approximation functions.
The discretisation is, respectively, represented only by grid-points (poles of the
global approximation functions) in contrast to the FEM, FVM, BDIM methods
where appropriate polygonisation needs to be generated in addition, or FDM,
where points are constrained to the coordinate lines. The main advantage of
using the RBFCM for solution of partial differential equations is its simplicity,
applicability to different PDEs, and effectiveness in dealing with arbitrary
dimension and complicated domains. The method recently started to be
successfully applied in many scientific and engineering disciplines. It has been
first used in heat transport context by Zerroukat et al. (1998) for diffusion
problems and later (Zerroukat et al., 2000) for advection-diffusion problems.
The method has been applied to the classical De Vahl Davis natural convection
problem by Šarler et al. (2001) and in natural convection problem with a free
boundary associated with the solid-liquid phase change by Perko et al. (2001)
by using the primitive variables. The streamfunction-vorticity formulation of
the Navier-Stokes equations have been solved by RBFCM in the work of
Mai-Dui and Tran-Cong (2001a).

The radial basis functions have been first put into context of porous media
flow by Šarler et al. (2000) where the natural convection problem has
been solved by the dual reciprocity boundary element method (DRBEM).
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This method belongs to the semi-mesh-free methods, because the domain fields
are approximated by the global interpolation with the radial basis functions
and the boundary fields by the boundary elements (polygons). Present work,
considered as a logical continuation of the work of Šarler et al. (2000), shows the
possibility of solving the problem on an entirely polygon-free basis, without
any boundary or domain polygonisation and subsequent cumbersome
evaluation of regular, weakly-singular, strongly-singular, and hyper-singular
integrals. The second principal motivation for the present research lies in the
systematic assessment of the suitability of the RBFCM in recirculating flow
situations. For this purpose, a comparatively simple (no convection term,
no diffusion term in momentum equation) Darcy natural convection flow has
been used as a starting point, which should lead to the treatment of more
complicated fluid flow situations in future.

2. Governing equations
This paper deals with homogenous porous media with porosity 1 and
permeability K, confined to a two-dimensional domain V with boundary G.
The rigid porous matrix and the incompressible fluid with viscosity m
saturating the pores have the same constant density @, effective thermal
conductivity k and the specific heat at constant pressure cp. The mass
conservation for the defined system is

7 · v ¼ 0; ð1Þ

where v stands for the seepage velocity. The momentum conservation is
assumed to obey the Darcy law

0 ¼ 27P 2
m

K
v þ f; ð2Þ

with P denoting pressure and f the body force. The variation of the density with
temperature is included through the body force term only by using the
Boussinesq approximation

f ¼ @a½1 2 bðT 2 TrefÞ�; ð3Þ

where a stands for the acceleration vector, b for the volumetric thermal
expansion coefficient, T for temperature and Tref for the reference temperature.
The energy conservation equation is

@cp7 · ðvTÞ ¼ k72T: ð4Þ

The solution of the equations (1) and (2) is constructed by assuming
impermeable velocity boundary conditions along the whole boundary G
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v · nG ¼ 0; p [ G; ð5Þ

where nG stands for the normal on the boundary G, and p for the position
vector. The solution of equation (4) is constructed by assuming the division of
the boundary G into not necessarily connected parts GD and GN with the
Dirichlet and Neumann thermal boundary conditions, respectively,

T ¼ TG; p [ GD; 2k
›T

›nG

¼ FG; p [ GN; ð6Þ

where TG and FG represent known functions. The solution of the posed natural
convection problem represents the pressure, velocity, and temperature
distribution over the domain V and the boundary G.

3. Solution procedure
The construction of the solution is represented in three steps. The first step
involves the global approximation of the involved fields by the radial basis
functions. The second step involves the set-up of collocation equations for the
pressure, velocity, pressure correction, velocity correction, and temperature
field, as well as the basic elements of the iterative procedure. The third step
focuses on the numerical implementation issues.

3.1 Global approximation
The involved pressure, velocity, and temperatures fields are all calculated in
the same grid-points pm; m ¼ 1; 2; . . .;M ; M ¼ MG þ MV: The first MG

grid-points are distributed on the boundary and the last MV in the domain.
This paper is limited to the two-dimensional Cartesian system, e.g.

p ¼ pjij; j ¼ x; y; ð7Þ

where pj; j ¼ x; y denote the Cartesian coordinates (base vectors ij; j ¼ x; y) of
point p. The unknown fields are approximated by N global approximation
functions cn(p) and their coefficients 6

FðpÞ < cnðpÞ6
F
n ; n ¼ 1; 2; . . .;N : ð8Þ

The Einstein’s summation convention is used in this text, i.e. any index which
is repeated twice in a product is summed up. An underlined index is not
summed up. Indices i, l, m, n, and j are introduced. They run as
i;m; l ¼ 1; 2; . . .;M , n ¼ 1; 2; . . .;N ; j ¼ x; y if not stated otherwise. The
scalar function F stands for pressure, velocity component or temperature.

The approximation coefficients 6Fn can be calculated from collocation
equations in points pm

FðpmÞ ; Fm ¼ cnðpmÞ6
F
n ; cmn6

F
n : ð9Þ
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Since the number of functions N might be chosen greater than the number of
collocation points M, the following augmentation equations are needed in order
to determine all the coefficients 6Fn

cnðpmÞ6
F
m ¼ 0: ð10Þ

Equations (9) and (10) can be written in a compact form

~Fi ¼ CF
in 6

F
n ; ð11Þ

where ~Fi ¼ Fi ; i ¼ 1; 2; . . .;M and ~Fi ¼ 0; i ¼ M þ 1;M þ 2; . . .;N :
Coefficients 6n follow by inverting system (11)

6Fn ¼ C21
ni

~Fi ¼ C21
nmFm; ð12Þ

and the interpolation (8) reads

FðpÞ < cnðpÞC
21
nmFm: ð13Þ

The first and the second partial derivatives of the function F over coordinate
pj can be approximated as

›

›pj
FðpÞ <

›

›pj
cnðpÞC

21
nmFm; ð14Þ

›2

›p2
j

FðpÞ <
›2

›p2
j

cnðpÞC
21
nmFm: ð15Þ

3.2 Augmented radial basis functions
Two-dimensional Hardy’s multiquadrics (l ¼ 1=2) are used in the present
study

cnðpÞ ¼ r2
n þ r2

0

� �l
; n ¼ 1; 2; . . .;M ; ð16Þ

with

r2
n ¼ ðp 2 pnÞ · ðp 2 pnÞ: ð17Þ

r0 stands for the scaling parameter. The following functions are added in the
first-order polynomial augmentation

cMþ1ðpÞ ¼ 1; cMþ2ðpÞ ¼ px 2 p0
x

� �
; cMþ3ðpÞ ¼ py 2 p0

y

� �
; ð18Þ

The following three functions are added in addition to function (18) in the
second-order polynomial augmentation
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cMþ4ðpÞ ¼ px 2 p0
x

� �2
; cMþ5ðpÞ ¼ px 2 p0

x

� �
py 2 p0

y

� �
;

cMþ6ðpÞ ¼ py 2 p0
y

� �2

;

ð19Þ

The following four functions are added in addition to the functions (18) and (19)
in the third-order polynomial augmentation

cMþ7ðpÞ ¼ px 2 p0
x

� �3
; cMþ8ðpÞ ¼ px 2 p0

x

� �2
py 2 p0

y

� �
;

cMþ9ðpÞ ¼ px 2 p0
x

� �
py 2 p0

y

� �2

; cMþ10ðpÞ ¼ py 2 p0
y

� �3

:

ð20Þ

The scaling constants p0
x and p0

y are set to

p0
x ¼

1

2
ð pxþ þ px2Þ; p0

y ¼
1

2
ð pyþ þ py2Þ; ð21Þ

where pxþ ; pyþ represent the maximum and px2 ; py2 the minimum coordinates
px; py, respectively, of the domain V. The polynomials have been scaled to
preserve the translational symmetry of the solution. Among all RBFs tested in
the review paper of Franke (1982), Hardy’s multiquadrics ranked the best,
followed by the Duchon’s thin plate splines. The latter have been used in our
preliminary study (Šarler et al., 2002) of RBFCM solution of natural convection
in the porous media, since they do not involve a free parameter. On the other
hand, the more accurate Hardy’s multiquadrics, used in the present detailed
study, involve a free parameter r0 that introduces additional degree of freedom
into the present discussion. The augmentation polynomials have been included
to investigate their effect on the solution.

The choice of the shape parameter remains to be a hot topic in data
interpolation. Franke (1982) suggested the shape parameter to be

r0 ¼ u ‘; ð22Þ

where ‘ represents the mean distance between the grid-points and u ¼ 1:25:
On the other hand, Hardy (1990) suggested the shape parameter u to be 0.815,
where ‘ stands for the average minimum distance between the grid-points.
Carlson and Foley (1991) suggested that the shape parameter increases with the
increasing curvature of the interpolated function. Following this idea, Kansa
(1990a) used the variable shape parameter. Golberg et al. (1996) proposed a
statistical cross-validation technique to optimise the free parameter. Mai-Dui
and Tran-Cong (2001b), Power and Barraco (2002) and Wang and Lui (2002)
used sensitivity studies to find out the typical shape parameter. The latter
authors employed the weak form of the Kansa method (a variant of the point
interpolation method) and also adjusted the exponent l in addition to r0.
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Mai-Dui and Tran-Cong (2001b) made a remark that their cumulative
experience in determining the optimum value of u lies somewhere between 1
and 10. A sensitivity study for determining the proper value of u as used in the
present work confirms their experience.

3.3 Solution of the pressure field
The momentum equation is coupled with the energy equation through the body
force. The energy equation is coupled with the momentum equation through
the velocity field. Consequently, the solution inherently involves iterations. Let
us assume that the pressure, velocity, and temperature fields are all known at
iteration level j. The discussion of iteration cycle that follows explains how the
pressure, velocity, and temperature fields are calculated at the next iteration
level j+1. The solution of the momentum equation at the iteration level j+1 is
obtained in the following way. The pressure poisson equation (PPE) is
constructed by taking the divergence of the momentum conservation (2)

72P jþ1 ¼ 7 · 2
m

K
vj þ fj

� �
: ð23Þ

The Neumann pressure boundary conditions can be defined along the whole
boundary G by taking the scalar product of the momentum equation with the
normal on the boundary. This gives

7P jþ1 · nG ¼ 2
m

K
vj þ fj

� �
· nG; p [ G: ð24Þ

Since the impermeable velocity boundary conditions (5) are valid, upper
equation reduces to

›P

›nG

jþ1

¼ fj · nG; p [ G: ð25Þ

The pressure field is solved by approximating the PPE as follows. The
collocation equations in the boundary nodes are

›

›px
cinnGxi þ

›

›py
cinnGyi

� �
C21

nmP jþ1
m ¼ f j

xinGxi þ f j
yinGyi; i ¼ 1; 2; . . .;MG:

ð26Þ

The collocation equations in the domain nodes are

›2

›p2
x

cin þ
›2

›p2
y

cin

 !
C21

nmP jþ1
m ¼

›

›px
cinC

21
nm 2

m

K
v j

xm þ f j
xm

� �

þ
›

›py
cinC

21
nm 2

m

K
v j

ym þ f j
ym

� �
; i ¼ MG þ 1;MG þ 2; . . .;M ;

ð27Þ
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where the approximation of the first and the second partial derivatives follows
(equations (14) and (15)). Upper system of equations (26) and (27) is singular
due to the presence of the Neumann boundary conditions over the whole
boundary. One of the collocation equations in the domain nodes, denoted by
Nref, is represented by the reference pressure collocation equation in order to
avoid the singularity

dN refmP jþ1
m ¼ Pref ; MGþ1 # m # M ; ð28Þ

where d stands for the Kronecker symbol and Pref for the reference pressure,
respectively. The solution of upper, combined boundary-domain system of
equations (26)-(28) gives the unknown pressure field P jþ1

m : The pressure
gradient field can be calculated from the pressure field through

›

›pj
P jþ1

m ¼
›

›pj
cmnC

21
nl P jþ1

l : ð29Þ

3.4 Solution of the velocity field
After calculating the pressure gradient field the velocity field at the iteration
level jþ 1 can be explicitly calculated from the momentum equation

v̂ jþ1
jm ¼

K

m
2

›

›pj
P jþ1

m þ f j
jm

� �
: ð30Þ

The “hat” on the velocity denotes that the velocity field does not correspond to
the mass conservation in general. The incompressibility is enforced through
the pressure �P and velocity corrections �v which ensure

7 · v jþ1 ¼ 7 · ðv̂ jþ1 þ �v jþ1Þ ¼ 0: ð31Þ

Consider that the velocity correction v̌ j+1 occurs exclusively due to action of the
pressure correction P̌ j+1

cP
rel

m

K
�v jþ1 ¼ 27 �P jþ1; ð32Þ

where cP
rel represents a heuristic velocity correction – pressure correction

relaxation factor. The pressure correction can thus be calculated from the
velocity field v̂ through the pressure correction poisson equation (PCPE)

72 �P jþ1 ¼ cP
rel

m

K
7 · v̂ jþ1; ð33Þ

deduced from equations (31) and (32). Since no correction is needed in the
direction normal to the boundary, the following pressure correction boundary
conditions are valid
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›

›nG

�P jþ1 ¼ 0: ð34Þ

The pressure correction field is solved by approximating the PCPE as follows.
The collocation equations in the boundary nodes are

›

›px
cinnGxi þ

›

›py
cinnGyi

� �
C21

nm
�P

jþ1

m ¼ 0; i ¼ 1; 2; . . .;MG: ð35Þ

The collocation equations in the domain nodes are

›2

›p2
x

cin þ
›2

›p2
y

cin

 !
C21

nm
�P

jþ1

m ¼ cP
rel

m

K

›

›px
cinC

21
nmv̂ jþ1

xm þ
›

›py
cinC

21
nmv̂ jþ1

ym

� �
;

i ¼ MG þ 1;MG þ 2; . . .;M ; ð36Þ

where the equations (14) and (15) have been used for the approximation of the
first and the second partial derivatives. Upper system of equations is singular
due to the same reasons as system (26) and (27). In order to avoid the
singularity, the pressure correction field is set to the reference pressure in
the node Nref

dN refm
�P

jþ1

m ¼ Pref ; MG þ 1 # m # M ; ð37Þ

with Pref standing for the reference pressure. The solution of upper, combined

boundary-domain collocation system of equations (35)-(37) gives the unknown

pressure correction field �P
jþ1

m : The pressure correction gradient field can be
calculated from the pressure correction field through

›

›pj
�P

jþ1

m ¼
›

›pj
cmnC

21
nl

�P
jþ1

l : ð38Þ

The velocity field is updated towards the incompressibility through the
pressure gradient corrections

v jþ1
jm ¼ �v jþ1

m 2
K

m

›

›nG

�P
jþ1

m : ð39Þ

3.5 Solution of the temperature field
The iteration cycle is completed by calculating the temperature field at
iteration level jþ1 (and after that also f j+1). The energy collocation equation in
the boundary nodes is
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xDi cinC
21
nm þ xNi nG xi

›

›px
cinC

21
nm þ nGyi

›

›py
cinC

21
nm

� �	 

T jþ1

m

¼ xDi TGi þ xNi FGi; i ¼ 1; 2; . . .; MG;

ð40Þ

where the boundary conditions indicator has been introduced

xDðpÞ ¼
1 p [ GD

0 p � GD

8<
: ; xNðpÞ ¼

1 p [ GN

0 p � GN

8<
: ð41Þ

The energy collocation equation in the domain nodes is

@cp7 · cinC
21
nmv jþ1

m T jþ1
m

� �
¼ k72cinC

21
nmT jþ1

m ; i ¼ MG þ 1;MG þ 2; . . .;M ;

ð42Þ

or explicitly

@cp
›

›px
cinC

21
nmv jþ1

xm þ
›

›py
cinC

21
nmv jþ1

ym

� �	

2k
›2

›p2
x

cin þ
›2

›p2
y

cin

 !
C21

nm

#
T jþ1

m ¼ 0:

ð43Þ

Equations (40) and (43) may be used to solve simultaneously the unknown
temperature distribution T jþ1

m : However, this would not permit the solution of
the systems of equations to be calculated through the LU decomposition only
once, since the system matrix changes due to variable velocity field.
Respectively, equation (43) is numerically implemented in the following form

k
›2

›p2
x

cin þ
›2

›p2
y

cin

 !
C21

nmT jþ1
m ¼ @cp

›

›px
cinC

21
nmv jþ1

xm þ
›

›py
cinC

21
nmv jþ1

ym

� �
T j

m;

ð44Þ

that preserves the system matrix through all iterations. The temperature
derivatives on the boundary and in the domain can be explicitly calculated as

›T

›pj

jþ1

m

¼
›

›pj
cmnC

21
nl T jþ1

l : ð45Þ

The iteration cycle is completed with the calculation of the updated body force

f jþ1
m ¼ @a½1 2 bðT jþ1

m 2 TrefÞ�: ð46Þ

The iterations are stopped when conditions
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v jþ1
m

�� ��2 v j
m

�� ���� �� , v1; T jþ1
m

��� ���2 T j
m

��� ������ ��� , T1; ð47Þ

are satisfied in all collocation points pm with v1 and T1 representing the
velocity and temperature convergence criterions. In case iteration conditions
(47) are not satisfied, a new iteration cycle starts with the relaxed values of the
velocity, temperature, and body force

v jþ1
m ¼ v j

m þ cv
rel v jþ1

m 2 v j
m

� �
; ð48Þ

T jþ1
m ¼ T j

m þ cT
rel T jþ1

m 2 T j
m

� �
; ð49Þ

f jþ1
m ¼ f j

m þ c f
rel f jþ1

m 2 f j
m

� �
; ð50Þ

with cv
rel; cT

rel; cf
rel representing the heuristic relaxation factors for velocity,

temperature, and body force, respectively.

3.6 Numerical implementation and computer platform
The numerical implementation is made double precision in COMPAQ VISUAL

FORTRAN with IMSL library. Test cases have been run on HP-OMNIBOOK XE3

laptop with an Intel Pentium III 850 MHz processor, 256 MB memory, and MS
Windows 2000 operating system. The collocation matrix C has been inverted
by using the routine DLINRG. The system matrix in pressure, pressure
correction, and temperature systems of equations does not change.
Respectively, these three systems are first LU decomposed by the routine
DLFRGT and then solved by the routine DLFSRG at each iteration. The
temperature and velocity iteration tolerances are set to T1 ¼ 1024; v1 ¼ 1024:
Velocity relaxation factor is set to 1, temperature relaxation factor to 1021,
and body force relaxation factor to 1023. The heuristic pressure correction
factor is set to 1. The related criterion (47) is evaluated in all grid-points. Case “d”
from Table II requires approximately 2 h of CPU time on the defined platform.

4. Numerical examples
4.1 Differentially heated rectangular cavity – scaling
Consider a rectangular impermeable cavity px2 # px # pxþ ; py2 # py # pyþ

with heated boundary at px ¼ px2 and cooled boundary at px ¼ pxþ : The
boundaries at py ¼ py2 and py ¼ pyþ are insulated. The heated and cooled
boundaries are subject to Dirichlet boundary conditions

TGðpx2 ; pyÞ ¼ T þ; TGðpxþ ; pyÞ ¼ T 2: ð51Þ

The Neumann boundary conditions with FG ¼ 0 apply at both insulated
boundaries
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FGðpx; py2Þ ¼ 0; FGðpx; pyþÞ ¼ 0: ð52Þ

The posed classical natural convection problem can be written in a
dimensionless form by defining the dimensionless coordinates ~px and ~py

~pj ¼
pj 2 p0

j

Dpj
; ð53Þ

with Dpj ¼ pjþ 2 pj2 : Cavity height/width aspect ratio A is defined as

A ¼
Dpy

Dpx
: ð54Þ

The dimensionless velocity ~v is defined as

~v ¼
Dpy

a
v; a ¼

k

@cp
; ð55Þ

where a stands for thermal diffusivity. The dimensionless pressure ~P is
defined as

~P ¼
KDpy

am
P: ð56Þ

The filtration Rayleigh number Ra* based on cavity height is defined as

Ra* ¼
@KabDpyDT

am
; ð57Þ

with DT ¼ T þ 2 T 2: The dimensionless temperature ~T is defined as

~T ¼
T 2 Tref

DT
: ð58Þ

The Boussinesq reference temperature is set to Tref ¼ ðT þ 2 T 2Þ=2: The
dimensionless mass and momentum conservation equations are

~7 · ~v ¼ 0; ð59Þ

0 ¼ 2 ~7 ~P 2 ~v þ Ra* ~Tiy; ð60Þ

with the corresponding dimensionless boundary conditions

~v · nG ¼ 0: ð61Þ

The adjacent energy equation is
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~7 · ð ~v ~TÞ ¼ ~72 ~T; ð62Þ

with the corresponding dimensionless boundary conditions

~TG ^
1

2
A; ~py

� �
¼ ^

1

2
; ~FG

~px;^
1

2

� �
¼ 0: ð63Þ

The posed natural convection problem is completely defined through two
dimensionless parameters, the aspect ratio A, and the vertical filtration
Rayleigh number, Ra*.

4.2 Reference solution
Since the analytical solution to the problem is not known, the characteristics of
the developed method can be assessed only by comparing it with the solution
obtained by some other numerical method. The fine-mesh FVM (Gobin and
Bennacer, 1996a, b) reference solution as used earlier by Šarler et al. (2000), is
also taken as a reference in this work. The validation of the FVM code was
performed over a large range of parameters for purely thermal natural
convection in fluids or in porous media. The reference simulations presented
hereinafter are based on the Darcy-Brinkman version of the code using a very
low Darcy number, Da ¼ 1028: The FVM calculations were performed on a
Cray-98 vector mainframe.

4.3 Discussion of the results
The main purpose of the numerical tests presented in this paper is to
investigate the convergence and robustness of the developed method. The
RBFCM solution is compared with the reference values of the overall cavity
Nusselt number, Nuref, and streamfunction minimum, c0ref

min, for the five sets of
dimensionless parameters listed in Table I. Six collocation point arrangements
have been introduced in this work. The coarse uniform grid “a” (10£10) is
composed of MG ¼ 40 boundary collocation points and MV ¼ 81 domain
collocation points, i.e. M ¼ 121: The medium uniform grid “b” (20£20) is
characterised by MG ¼ 80; MV ¼ 361; M ¼ 441: The fine uniform grid “c”
(30£30) is characterised by MG ¼ 120; MV ¼ 841; M ¼ 961: The fine
non-uniform grid “d” (30£30) has the same number of boundary and domain
collocation points as grid “c” except that the grid-points experience the
non-uniformity (defined with grid points npj; j ¼ x; y) proposed by Sadat and
Couturier (2000)

npj ¼ p2j þ
1

2
pþj 2 p2j þ

tanh½2ðpj 2 p2j Þ2 ðpþj 2 p2j Þ�

tanhð1Þ

 !
: ð64Þ
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The uniform grid “e” (20£40) is used for calculations of the case with A ¼ 1=2;
and the uniform grid “f” (40 £ 20) for calculations of the case with A ¼ 2: Grids
“e” and “f” are characterised by MG ¼ 120; MV ¼ 741; M ¼ 861:

Table II shows the accuracy of the solution in terms of streamfunction
minimum and Nusselt number at A ¼ 1; Ra* ¼ 100 as a function of the free
parameter u in Hardy’s multiquadrics, no polynomial augmentation. In this
paper, the parameter ‘ is the interpreted as the typical mesh distance, for
example in uniform Grids “a” and “b” as ‘ ¼ Dpy=10; and Dpy=20 in uniform
grid “c” and non-uniform grid “d” as ‘ ¼ Dpy=30; and in cases with A ¼ 1=2
and 2 as ‘ ¼ Dpy=20 and Dpy=40; respectively. The best streamfunction
accuracy is obtained with u ¼ 3 and the best Nusselt number accuracy with
u ¼ 2:5: Since u ¼ 2:5 requires minimum number of iterations this value has
been fixed in all calculations that follow.

Table III shows the accuracy in the same measures and at the same physical
conditions as Table II at fixed u without and with polynomial augmentation.
One can observe the increase in the number of required iterations to reach the
convergence in cases with polynomial augmentation. Overall, the accuracy of
the results does not change much with addition of the polynomial terms. This
conclusion can be perceived also from the work of Power and Barraco (2002).

u Nu DNu c 0
min Dc 0

min Jmax

1.0 2.7721 20.1063 24.2254 20.1063 5,125
2.0 2.9762 20.0405 24.2808 20.0405 3,624
2.5 3.0262 20.0244 24.3332 20.0850 3,515
3.0 3.0180 20.0270 24.2088 20.0270 3,592
4.0 2 2 2 2 2

Note: In terms of the Nusselt number and streamfunction minimum at A ¼ 1, Ra* ¼ 100, grid
“b” as a function of multiquadric parameter u, no polynomial augmentation. Case with u ¼ 4:0
is not reaching convergence. DNu ¼ ðDNu 2 DNurefÞ=DNuref , Dc 0

min ¼ ðc 0
min 2 c 0ref

minÞ=c
0ref
min

with Nuref and c 0ref
min listed in Table I. Jmax represents the number of required iterations for

reaching convergence. The evaluation of Nu and c 0 is given in appendices 1 and 2

Table II.
Accuracy of the RBFCM
solution

A Ra* Nuref c0ref
min

1.0 25 +1.3682 21.6550
0.5 50 +2.1354 22.1481
1.0 50 +1.9794 22.8633
2.0 50 +1.3863 22.6393
1.0 100 +3.1018 24.7357

Note: For different aspect ratios and filtration Rayleigh numbers obtained by mesh consisting of
40,000 finite volumes

Table I.
FVM reference solution
(Gobin and Bennacer,
1996a, b)
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The polynomial augmentation was thus omitted from all subsequent
calculations.

The RBFCM solution is compared with the reference solution by using the
defined six grid-point arrangements.

By comparing the streamfunction and Nusselt number results in Table IV
with A ¼ 1 and grids “a”, “b”, and “c”, one can observe the convergence of the
results with finer grid. The non-uniform grid “d” gives better accuracy as
uniform grid “c” due to redistribution of the collocation points in regions with
higher field gradients, however it requires slightly more iterations to reach the
convergence. The accuracy deteriorates with the higher filtration Rayleigh
number which is expected due to higher gradients of the thermal and velocity
fields. The number of required iterations for achieving convergence increases
with the increasing A and increasing Ra* and shows almost no sensitivity to
uniform grid refinement.

Figure 1 shows the flow and temperature fields. The coarse grid “a” solution
shows the same principal qualitative features as the finer grids. Note the

Augmentation Nu DNu c 0
min Dc 0

min Jmax

None 3.0262 20.0244 24.3332 20.0850 3,515
First-order 3.1437 20.0135 24.4974 20.0503 4,179
Second-order 3.1731 20.0230 24.5609 20.0369 3,640
Third-order 3.0231 20.0254 24.7175 20.0038 3,973

Note: In terms of the Nusselt number and streamfunction minimum at A ¼ 1, Ra* ¼ 100, grid
“b” as a function of the order of polynomial augmentation Multiquadric parameter u ¼ 2.5

Table III.
Accuracy of the

RBFCM solution

Grid type A Nu DNu Ra* c 0
min Dc 0

min Jmax

a 1.0 25 1.3668 20.0010 21.6059 20.0296 2,156
b 1.0 25 1.3686 +0.0003 21.6293 20.0155 1,958
c 1.0 25 1.3692 +0.0007 21.6367 20.0111 1,885

a 1.0 50 1.9344 20.0227 22.6871 20.0616 2,953
b 1.0 50 1.9909 +0.0058 22.7542 20.0381 2,761
c 1.0 50 1.9877 +0.0042 22.7805 20.0289 2,699

a 1.0 100 2.6993 20.1298 24.1261 20.1287 3,603
b 1.0 100 3.0262 20.0244 24.3332 20.0850 3,515
c 1.0 100 3.1133 +0.0037 24.4507 20.0602 3,579
d 1.0 100 3.1031 +0.0004 24.6201 20.0244 3,832
e 0.5 50 2.1322 20.0015 22.1248 20.0108 2,233
f 2.0 50 1.3840 20.0017 22.5999 20.0149 2,845

Note: In terms of the Nusselt number and streamfunction minimum for different aspect ratios
and filtration Rayleigh numbers as a function of collocation grid. Multiquadric parameter
u ¼ 2.5, no polynomial augmentation

Table IV.
Accuracy of the

RBFCM solution
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reduction of the flow error in north-east and south-west corners as a function of
grid refinement and redistribution.

Figure 2 shows the streamfunction for aspect ratios A¼1/2 and 2. One
observes the improvement of the accuracy of the dimensionless ṽx component
of the flow field in Figure 3 and dimensionless ṽy component of the flow field in
Figure 4 as a function of the grid refinement. Particularly intensive is the
reduction of errors in the boundary region due to grid redistribution (compare
results obtained with Grids “c” and “d”).

Figure 1.
Isotherms and velocity
vectors for A ¼ 1,
Ra*¼100. The boundary
grid-points are
represented by † and the
domain grid-points by W.
Isotherms are
equidistantly spaced.
From the top to the
bottom: solutions with
grids “a”, “b”, “c”, and
“d”. Multiquadric
parameter u ¼ 2.5,
no polynomial
augmentation
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The insulated surface temperature shows large sensitivity to grid refinement
and the mid-plane temperature appears to be less sensitive to the same grid
refinement as shown in Figure 5.

The hot side Nusselt number shows convergence with the finer grids;
however, the almost perfect match with the FVM results is obtained only with
the non-uniform grid “d” (Figure 6).

5. Conclusions
This paper describes the initial attempts at solving the problem of Darcy
natural convection in porous media by the RBFCM. Results are obtained for the
rectangular cavities with aspect ratio 0.5, 1, and 2, and filtration Rayleigh
numbers 25, 50, and 100. The method is structured on Hardy’s multiquadric

Figure 2.
Streamlines for Ra*¼50

with equidistant 0.25
step. Top A ¼ 1/2,

grid “e”. Bottom: A ¼ 2,
grid “f”. Multiquadric

parameter u ¼ 2.5,
no polynomial
augmentation
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function
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radial basis functions. The free parameter was found to give best results at 2.5
times the typical mesh distance. Polynomial augmentation is tested in addition.
The results do not differ much from the non-augmented case. The solution is
shown for uniform and non-uniform grids. The calculation of streamfunction
and Nusselt number from the global approximation representation of the fields
leads to closed form expressions as indicated in the appendices. It has been
found that the physics of the problem is qualitatively properly described even
with very coarse collocation grids which quantitatively do not differ
substantially from the fine-mesh FVM values. The main advantage of the
method truly represents the polygon-free discretisation, simple numerical
implementation, which is very similar in 2D and 3D problems, and no

Figure 3.
Dimensionless horizontal
velocity ṽx at p̃x¼ 0 as a
function of
dimensionless cavity
height p̃y for A¼ 1,
Ra* ¼ 100. Dots
represent the reference
fine-mesh FVM solution.
From the top to the
bottom: solutions with
grids “a”, “b”, “c”, and
“d”. Multiquadric
parameter u ¼ 2.5, no
polynomial
augmentation
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numerical integration involved. The method is potentially competitive because
of the obvious man-power reduction in grid generation.

The formulation shown can be upgraded by the collocation that gives
symmetric matrices, as recently shown by Power and Barraco (2002). Their
approach is much more difficult to numerically implement, however it might
have advantages in convection dominated problems. Zhang et al. (2000)
identified the problem of poor accuracy of the derivatives at the boundary
nodes in RBFCM. They introduced a Hermite type collocation method where
both the PDE and boundary conditions are imposed on the boundary
grid-points for improved performance. Their proposal has been further
generalised by Chen and Tanaka (2000, 2002) to cope with the Dirichlet and
Neumann boundary conditions as well as include the symmetric collocation.

Figure 4.
Dimensionless vertical

velocity ṽy at p̃x¼ 0
as a function of

dimensionless cavity
width p̃x for A¼ 1,

Ra* ¼ 100. Dots
represent the reference

fine-mesh FVM solution.
From the top to the

bottom: solutions with
grids “a”, “b”, “c”, and

“d”. Multiquadric
parameter u ¼ 2.5, no

polynomial
augmentation
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The method of fundamental solutions with RBFs-based DRM (Li et al., 2002)
might replace the present Kansa solution of the involved Poisson equations.
This method eliminates the second-order partial derivatives, improves
accuracy, and relaxes the smoothness requirements of the RBFs used at the
expense of the problems associated with positioning of the poles of the
fundamental solution.

The main disadvantage of the present method represents the full involved
systems of algebraic equations that are difficult and expensive to solve for
large problems. This issue might be in the future mitigated by the use of the
compactly supported radial basis functions, multilevel radial basis functions,
iterative solvers, adaptive grid or domain decomposition. The use of compactly

Figure 5.
Dimensionless
temperature T̃ at
px¼ px2

and p̃x¼ 0 as a
function of cavity width
for A ¼ 1, Ra* ¼ 100.
Dots represent the
reference fine-mesh FVM
solution. From the top to
the bottom: solutions
with grids “a”, “b”, “c”,
and “d”. Multiquadric
parameter u ¼ 2.5,
no polynomial
augmentation
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supported radial basis functions has been first proposed by Chen et al. (1999).
The resulting matrix becomes sparse and suitable fast solvers can be
employed. The multilevel radial basis functions have been introduced by
Fasshauer (1999) as a mesh-free alternative to multigrid methods. The iterative
solvers in connection with the RBFs have been tested by Bulgakov et al. (1998).
The domain decomposition has been presented by Mai-Dui and Tran-Cong
(2002). All mentioned approaches are possibly applicable also in the tackled
porous media flow conditions.

It would be too ambitious to claim that the represented method could be
extended to a wide variety of porous media situations in engineering practice at
this point. Additional research is definitely required for this purpose. The listed

Figure 6.
Nusselt number as a

function of cavity height
for A ¼ 1, Ra* ¼ 100.

Dots represent the
reference fine-mesh FVM

solution. Solid circles
represent the calculated
local Nusselt number in

boundary grid-points,
and the solid line denotes

the calculated Nu( py)
from the global

interpolation
representation of the heat
flux. From the top to the

bottom: solutions with
grids “a”, “b”, “c”, and

“d”. Multiquadric
parameter u¼ 2.5,

no polynomial
augmentation
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developments can be used as a basis to upgrade the present plain formulation
of the Kansa method.
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Appendix 1. Calculation of streamfunction
The velocity-streamfunction c0 relationship are

vx ¼
›

›py
c 0; vy ¼ 2

›

›px
c 0: ð65Þ

The streamfunction is calculated from the velocity components as

c0 ¼

Z y

py2

vx dpy; c0 ¼ 2

Z x

px2

vy dpx: ð66Þ

A variation of the velocity components over the domain V and boundary G is based on the global
approximation functions

vj < cnC
21
nmvjm: ð67Þ

The streamfunction can be calculated as

c0 ¼

Z py

py2

cn dpyC
21
nmvxm; c0 ¼ 2

Z px

pxþ

cn dpxC
21
nmvym: ð68Þ

The involved integrals are evaluated analytically

Z
cn dpy ¼

1

9
2py 6p2

x þ p2
y

� �
þ 6p3

x arctan
py

px
þ 3py 3p2

x þ p2
y

� �
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

x þ p2
y

q� �
ð69Þ

Z
cNþ1 dpy ¼ py ð70Þ
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Z
cNþ2 dpy ¼ py px 2 p0

x

� �
ð71Þ

Z
cNþ3 dpy ¼ py

1

2
py 2 p0

y

� �
ð72Þ

Z
cNþ4 dpy ¼ py px 2 p0

x

� �2
ð73Þ

Z
cNþ5 dpy ¼ py px 2 p0

x

� � 1

2
py 2 p0

y

� �
ð74Þ

Z
cNþ6 dpy ¼ py

1

3
p2

y 2 pyp
0
y þ p0

y

2
� �

ð75Þ

Z
cNþ7 dpy ¼ py px 2 p0

x

� �3
ð76Þ

Z
cNþ8 dpy ¼ py px 2 p0

x

� �2 1

2
py 2 p0

y

� �
ð77Þ

Z
cNþ9 dpy ¼ py px 2 p0

x

� � 1

3
p2

y 2 pyp
0
y þ p0

y

2
� �

ð78Þ

Z
cNþ10 dpy ¼ py

1

4
p3

y 2 p2
yp0

y þ
3

2
pyp

0
y

2
2 p0

y

3
� �

ð79Þ

Appendix 2. Calculation of Nusselt number
In the present work the local Nusselt number Nu( py) is calculated as

NuðpyÞ ¼

›

›px
Tðpx2 ; pyÞ

ADT
ð80Þ

The overall cavity Nusselt number Nu is calculated as

Nu ¼

Z pyþ

py2

›

›px
Tðpx2 ; pyÞ dy

ADT
ð81Þ

Variation of the temperature over the domain V and boundary G is based on the global
approximation functions

›

›px
Tðpx; pyÞ <

›

›px
cnðpx; pyÞC

21
nmTm ð82Þ

Nu( py) can be evaluated as
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NucðpyÞ ¼

›

›px
cnðpx2 ; pyÞC

21
nmTm

ADT
ð83Þ

and Nu can be evaluated as

Nu ¼

Z pyþ

py2

›

›px
cnðpx2 ; pyÞdpyC

21
nmTm

ADT
ð84Þ

The integrals involved are evaluated analyticallyZ
›

›px
cn dpy ¼ px 2px arctan

py

px
2 py 1 2 2 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

x þ p2
y

q� �� �
ð85Þ

Z
›

›px
cNþ1 dpy ¼ 0 ð86Þ

Z
›

›px
cNþ2 dpy ¼ py ð87Þ

Z
›

›px
cNþ3 dpy ¼ 0 ð88Þ

Z
›

›px
cNþ4 dpy ¼ 2py px 2 p0

x

� �
ð89Þ

Z
›

›px
cNþ5 dpy ¼ py

1

2
py 2 p0

y

� �
ð90Þ

Z
›

›px
cNþ6 dpy ¼ 0 ð91Þ

Z
›

›px
cNþ7 dpy ¼ 3py px 2 p0

x

� �2
ð92Þ

Z
›

›px
cNþ8 dpy ¼ 2py px 2 p0

x

� � 1

2
py 2 p0

y

� �
ð93Þ

Z
›

›px
cNþ9 dpy ¼ py

1

3
p2

y 2 pyp
0
y þ p0

y

2
� �

ð94Þ

Z
›

›px
cNþ10 dpy ¼ 0 ð95Þ

HFF
14,2

212


